Electrolytic lesions within central complex neuropils of the cockroach brain affect negotiation of barriers.
نویسندگان
چکیده
Animals must negotiate obstacles in their path in order to successfully function within natural environments. These actions require transitions from walking to other behaviors, many of which are more involved than simple reflexes. For these behaviors to be successful, insects must evaluate objects in their path and then use that information to change posture or re-direct leg movements. Some of this control may occur within a region of the brain known as the central complex (CC). We used discrete electrolytic lesions to examine the role of certain sub-regions of the CC in various obstacle negotiation behaviors. We found that cockroaches with lesions to the protocerebral bridge (PB) and ellipsoid body (EB) exhibit abnormalities in turning and dealing with shelf-like objects; whereas, individuals with lesions to the fan-shaped body (FB) and lateral accessory lobe (LAL), exhibit abnormalities of those behaviors as well as climbing over blocks and up walls to a horizontal plane. Abnormalities in block climbing include decreased success rate, changes in climbing strategy, and delayed response to the block. Increases in these abnormal behaviors were significant in individuals with lesions to the FB and LAL. Although turning abnormalities are present in individuals with lesions to the LAL, EB and the lateral region of the FB, there are some differences in how these deficits present. For instance, the turning deficits seen in individuals with lateral FB lesions only occurred when turning in the direction opposite to the side of the brain on which the lesion occurred. By contrast, individuals with lesions to the EB and LAL exhibited turning abnormalities in both directions. Lesions in the medial region of the FB did not result in directional turning deficits, but in abnormalities in block climbing.
منابع مشابه
Anatomy of the lobula complex in the brain of the praying mantis compared to the lobula complexes of the locust and cockroach
The praying mantis is an insect which relies on vision for capturing prey, avoiding being eaten and for spatial orientation. It is well known for its ability to use stereopsis for estimating the distance of objects. The neuronal substrate mediating visually driven behaviors, however, is not very well investigated. To provide a basis for future functional studies, we analyzed the anatomical orga...
متن کاملEffects of Electrolytic Lesions of the Ventrolateral Periaqueductal Gray and Nucleus Raphe Magnus on Morphine – Induced Antinociception in the Nucleus Cuneiformi
A B S T R A C TIntroduction: The nucleus cuneiformis (NCF) and ventrolateral periaqueductal gray (vlPAG), two adjacent areas, mediate the central pain modulation and project to the nucleus raphe magnus (NRM). Methods: This study examined whether the antinociceptive effect of morphine microinjected into the NCF is influenced by inactivation of vlPAG and NRM in rats. Animals were bilaterally micr...
متن کاملEffects of Bilateral Electrolytic Lesions of the Dorsomedial Striatum on Motor Behavior and Instrumental Learning in Rats
Introduction: The dorsal striatum plays an important role in the control of motor activity and learning processes within the basal ganglia circuitry. Furthermore, recent works have suggested functional differentiation between subregions of the dorsal striatum Methods: The present study examined the effects of bilateral electrolytic lesions of the dorsomedial striatum on motor behavior and learn...
متن کاملPhotoperiod-dependent plasticity of circadian pacemaker center in the brain of the Madeira cockroach Rhyparobia maderae
The cockroach Leucophaea maderae is an established model in circadian rhythm research. Its circadian clock is located in the accessory medulla of the brain. Pigment-dispersing factor-immunoreactive (PDF-ir) neurons of the accessory medulla act as circadian pacemakers controlling locomotor activity rhythms. To characterize the neuronal network of the circadian system in L. maderae, the PDF-ir ne...
متن کاملDeciding Which Way to Go: How Do Insects Alter Movements to Negotiate Barriers?
Animals must routinely deal with barriers as they move through their natural environment. These challenges require directed changes in leg movements and posture performed in the context of ever changing internal and external conditions. In particular, cockroaches use a combination of tactile and visual information to evaluate objects in their path in order to effectively guide their movements i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 213 Pt 16 شماره
صفحات -
تاریخ انتشار 2010